A look at the region

The SUCCESSO-TERRA Project: a Lesson of Sustainability from the Terramare Culture, Middle Bronze Age of the Po Plain (Northern Italy)

Mauro Cremaschi a, Anna Maria Mercuri b, Alessandra Benatti b, Giovanna Bosi a, Filippo Brandolini a, Eleonora Clò b, Assunta Florenzan a, Elisa Furia b, Guido S. Mariani a, Marta Mazzanti b, Maria Chiara Montecchi b, Eleonora Rattighieri b, Rossella Rinaldi b, Paola Torri b, Andrea Zerboni a

a Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Milano, Italy
b Laboratorio di Palinologia e Paleobotanica, Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy

1. Background

How can we mitigate the effects of climate change? How can our society develop towards models of sustainable development in the coming years? The “bridge” to sustainability is a pivotal topic of international debate and is among the priorities of the agenda of the Horizon2020 Societal Challenges, linking the past with the future. Despite the many achievements emerging from some new solutions, it is becoming increasingly aware that the study of the past is at the root of reliable and responsible actions for the future.

The SUCCESSO-TERRA Project (Human societies, climate-environment changes and resource exploitation/sustainability in the Po Plain in the mid-Holocene: the Terramare culture; 2017–2020) is an interdisciplinary research program aiming at reconstructing the landscape and land-use transformations that occurred during the trajectory of the Terramare culture in the southern-central Po Plain of Northern Italy (Figure 1). The project, funded by

*Corresponding author. E-mail: annamaria.mercuri@unimore.it

Figure 1. The logo and concept of the SUCCESSO-TERRA Project.
The Terramare narrative based on archaeological and scientific evidence

The Terramare indicates the banked and moated villages of the Bronze Age, located in the alluvial plain of the Po River of Northern Italy, mostly in present-day Emilia Romagna (Pearce, 1998; Bernabò Brea, Cremaschi, 2009; Cremaschi, 2013). The Terramare culture flourished in the central part of the Po Plain during a period spanning the 16th to the 12th century BC. The Terramare economy was based upon farming, herding, and metallurgy (Bernabò Brea et al., 1997); moreover, Terramare settlements relied on having a well-developed management of water and wood resources. The people settled in an open environment that hosted scattered woodland and plentiful water resources. The Terramare people promoted networks of commercial exchange between northern Europe and the Mediterranean region. This civilization lasted for approximately 500 years, before suddenly collapsing around 1150 BC (Cardarelli, 2009).

Extensive excavations and geophysical surveying disclosed the complexity of their settlements and the interconnections between residential areas, defensive structures, fields and the natural hydrography. Agriculture in fields was supplied with irrigated water, and an innovative and sophisticated management system of the natural hydrographic network was developed (Cremaschi, 2009). Large artificial canals were excavated to draw water from rivers to the moats surrounding villages; then, water was redistributed to the fields through a dense network of irrigation ditches (Cremaschi, Pizzi, 2007; 2011; Cremaschi, 2018). The irrigation strategy and competent agriculture triggered this skilled civilization to its apogee with a demographic increase from the Middle to the Recent Bronze Age. Mesophilous woods (oaks and hornbeams) gave a major supply of natural raw material for building, fuel, and food (Cardarelli, 2009; Cremaschi, 2010; Mercuri et al., 2006a; 2015b). Pollen diagrams show low forest cover close to sites with a significant presence of wet environments and a set of anthropogenic habitats testified by pollen indicators of crops and synanthropic (API, as described by Behre, 1981; Mercuri et al., 2013).

According to the palynological record, the agricultural economy was based on forest management including coppicing, fruit collection in the wild, and crop fields. The fields included different types of cereals (Ravazzi et al., 1992; 2004; Mercuri et al., 2015b; Cremaschi et al., 2016) with evidence of intercropping with legumes (Mercuri et al., 2006a; 2006b). Moreover, most of the open landscapes around the villages were used for pastures as suggested mainly by Cichorieae and other pasture pollen indicators.

2. The Terramare narrative based on archaeological and scientific evidence

The Terramare settlements are exemplar archaeological/palaeoenvironmental contexts showing the complex dynamic between regional climatic/environmental changes and land use.

SUCCESSO-TERRA avoids climatic determinism and maintains a bi-directional perspective in the study of the relationships between climate, environment, and people – considering as it does the environment and civilizations as part of a complex dynamic system (e.g. Stoffle et al., 2003; Mercuri, 2008; Cremaschi, Zerboni 2009; 2011; Mercuri, Sadori, 2012). From one side, climate changes have triggered environmental and cultural adaptations. From the other side, people have continuously, and deeply, shaped the landscape in which they settled. However, a continuing and increasing human exploitation of natural resources creates an imbalance in the system (Diamond, 2005), resulting in possible episodes of population relocation or the collapse of human societies. Within this framework, Bronze Age Mediterranean civilizations have offered us several examples of crises with catastrophic outcomes. Similar dramatic effects have been recorded along the Alpine fringe with the crisis of the pile-dwelling communities (Magny et al., 2011). All these episodes led to significant changes in the structure of the involved civilization that, experiencing as they were the first steps of urban culture at that time, had an unsustainable impact on the environment.

Interdisciplinary research is mandatory if we want to understand the adaptive strategies of civilizations at different times and within a long-term perspective (Mercuri and Florenzano, 219). The Terramare case study refers to the changing environment during the Middle and Recent Bronze Ages (ca. 1550–1170 years BC; Bernabò Brea et al., 1997; Mercuri et al., 2006a), at the Middle to Late Holocene transition, and at the border between continental and Mediterranean Italy.
(Ravazzi et al., 2004; Mercuri et al., 2006b; Cremaschi et al., 2016). These land-use types have also been confirmed by the recovery of well-preserved macrobotanical remains in most of the studied contexts (Rottoli, Motella, 2004; Rottoli Castiglioni, 2009).

The intensification of the food demand probably caused cereal production to be inadequate for such a high number of people. Environmental stresses became ever more evident and wood resources were renewing slowly. For instance, the last phases of the pollen diagram from the Terramara di Montale show a decrease of woodland together with a reduction in cereal fields suggesting that soil and wood overexploitation might have been among the actual causes of the Terramare’s crisis (Mercuri et al., 2006b). At the top of the sequence of Santa Rosa di Poviglio, in correspondence with the drying of the moat system, a similar dramatic decrease of woods suggests that there may have been a twofold causation in the societal crisis affecting the Terramare culture: the increased aridity (a natural factor) and the overgrazing of natural resources (an anthropogenic factor) might have played a fairly synchronous action on the landscape (Cremaschi et al., 2016). The societal collapse of the Terramare culture is dated at ca. 1150 years BC; settlements in the central Po Plain were abandoned and Final Bronze Age settlements survived only in the northern sector of the Po Plain and in the Northern Apennines.

3. Research strategy

3.1 Key archaeological sites

The SUCCESSO-TERRA Project analyses data from three Bronze Age sites (Figure 2): (i) the Terramara Santa Rosa di Poviglio (Bernabò Brea, Cremaschi, 2004) (Figures 3–5) and (ii) the Vasca di Noceto site (Bernabò Brea, Cremaschi, 2009) (Figures 3, 6–8) are in the Po Plain; while (iii) the San Michele di Valestra (Cremaschi, 1997) site is a coeval settlement in the Apennines (Figures 3, 9–10). The first and second sites are well-known archaeological sites belonging to the Po Plain Terramare culture, whose excavations have been on-going for many years. The latter – San Michele di Valestra – is a Bronze Age site, located outside the Terramare territory, but in the adjoining Apennine range. This site survived the Terramare crisis and was settled with continuity throughout the Middle, Recent, and Final Bronze Ages, up to the Iron Age.

The methodology of the project is interdisciplinary; it is mainly based on geoarchaeological and archaeobotanical (pollen and macroremains) investigations. The main actions are on-going: to carry out archaeological excavations in the key sites, and a regional survey in areas surrounding the main archaeological settlements.

3.2 Geoarchaeology

Geoarchaeological investigations at selected sites are on-going, the main aim being to understand the human and natural contributions to the development and abandonment of the Terramare settlements in the Po Plain. Since the beginning of research into the Terramare in the nineteenth century, it has been clear that the moats surrounding these sites were connected to adjoining rivers from which water was obtained by canals (Pearce, 1998; Cremaschi, 2013). Additionally, the moats were fed by artesian wells excavated within the limits of each settlement (Cremaschi et al., 2006; 2016). At the Santa Rosa di Poviglio site (Figures 3–5), for instance, all these hydrological structures date back to the late Middle Bronze Age and, along with the infrastructure and residential buildings, are part of the urban planning project. Many large water wells had been opened along the edge of the settlement after the Middle Bronze Age and they...
Mauro Cremaschi, Anna Maria Mercuri, Alessandra Benatti, Giovanna Bosi, Filippo Brandolini, Eleonora Clio, Assunta Florenzano, Elisa Furia, Guido S. Mariani, Marta Mazzanti, Maria Chiara Montecchi, Eleonora Rattighieri, Rossella Rinaldi, Paola Torri, Andrea Zerboni: The SUCCESSO-TERRA Project: a Lesson of Sustainability from the Terramare Culture, Middle Bronze Age of the Po Plain (Northern Italy)

Figure 3. Pictures of the investigated sites: A) oblique aerial view of the Terramara Santa Rosa di Poviglio; B) the Vasca di Noceto site; C) the stratigraphic sequence of the San Michele di Valestra site; D) coring in the vicinity of the Terramara Santa Rosa di Poviglio.

Figure 4. Oblique aerial view of the excavation of the moat of the Terramara Santa Rosa di Poviglio; note the alignments of postholes and several water wells.
had been re-excavated several times. The wells exploited the sandy aquifers (at 2 to 3 m of depth), and several ditches conveyed water, not to the interior of the village, but to the moat (Cremaschi, 2013). The excavation of the Santa Rosa di Poviglio site thus illustrates that wells went out of use and silted up in the Final Bronze Age; as a consequence, the moat was also deprived of water and silted up (Cremaschi et al., 2016).

Natural archives of proxy data have been selected in order to gather further data and explain the reasons and timing of the environmental crisis determining the lowering of the water table in the region and the subsequent reduction in water reservoirs (Cremaschi et al., 2016). We collected several sediments cores in the vicinity of the Terramara Santa Rosa to investigate the local dynamic of the alluvial plain (Figure 3) and sampled a speleothem from the Tana della Mussina Cave in the Apennines, representing a very well preserved local archive of changes in Mid-Late Holocene rainfall. Moreover, geoarchaeological excavations at the San Michele di Valstra site (Figures 3, 9–10) will elucidate the key factors that enabled the higher resilience of the Bronze Age groups living in the Apennine ranges which survived the environmental crisis.

3.3 Palynology
Pollen samples were collected from trenches excavated in the main archaeological structures of the selected sites: (i) the moat and ditch surrounding the Santa Rosa di Poviglio site; (ii) the infilling of the Vasca Grande di Noceto; and (iii) a trench cutting the occupation layers of
the S. Michele di Valestra site. Moreover, three offsite cores have been extracted in the area surrounding the Terramara Santa Rosa di Poviglio. The sampling strategy covers on-site/off-site integrated records that are useful to distinguish human pressure and impact at both a very local and regional scale (Mercuri, 2014).

Besides the basic treatments, the pollen extraction has included sieving and heavy liquid floatation to concentrate microscopic remains: this is mandatory to obtain good pollen content from the archaeological layers (Florenzano et al., 2012). Pollen, non-pollen palynomorphs (algae, fungi, animal fragments) and microcharcoal particles help to reconstruct the flora composition, vegetation dynamics and palaeoecology. A set of anthropogenic pollen indicators (common in the spectra from Italian archaeological sites; Mercuri et al., 2013) may be especially useful to reconstruct the agricultural dynamics, besides the distribution of wild vegetation (wood and wetland plant associations). The palynological research allowed details of some of the complex processes in the agricultural economy to be filled in, such as were practiced on the basis of wood management and crop fields.

Since the first attempt of reconstructing the ancient land use, it appears evident that the area of influence of each Terramare settlement was a complex mosaic of natural and human-controlled landscapes; however, new results point to
some local differences in the availability and exploitation of wood and water resources at each archaeological site. As a general rule, the pattern was of cereal and legume fields that were alternated to pastures. Trees had a strategic role at Poviglio, Baggiovara, and Casinalbo. The large availability of water furthered the spread of hygrophilous woods near rivers, but oak woodland with oaks and hornbeam were also cared for. The Terramare people were aware of the importance of natural resources, and used the oak-woodland trees for collecting fruits, feeding animals, and making tools. We found signs that they maintained their oak woodlands by coppicing for hundreds of years, at least up until the time, when environmental stresses still allowed their cultural knowledge to survive in these lands.

4. General remarks and perspectives

For the first time, the SUCCESSO-TERRA Project offers to fully investigate the complex environmental and human nexus in the Bronze Age of the Po Plain, shining new light on the mutual interconnection between climate change, land-use, and human resilience. Our interdisciplinary approach will disclose the natural (aridification) and anthropic (overexploitation) reasons for the collapse of the Terramare culture in the Po Plain, and why in mountain areas coeval communities displayed a higher resilience to incoming climatic changes.

Follow the SUCCESSO-TERRA project: https://www.successoterra.net

Figure 10. Stratigraphic section of the excavation of the San Michele di Valestra site.
Further support to the excavation and conservation of the Terramore site is from the Italian Ministry of Cultural Heritage (MIBAC) and the municipality of Noceto (to M. Cremaschi). Part of this study is supported by the Italian Ministry of Education, University and Research (MIUR) through the project “Dipartimenti di Eccellenza 2018–2022” awarded to the Dipartimento di Scienze della Terra “A. Desio” of the University of Milano. The ongoing palynological research on cores near the Terramara di Poviglio is part of the PhD project of EC at the University of Modena and Reggio Emilia. AF, AZ, AMM, and MC wrote the paper; all authors are contributing to analytical and research phases of the SUCCESO-TERRA Project.

References

MERCURI, A.M., and FLORENZANO, A., 2019. The Long-Term perspective of human impact on landscape for Environmental Change (LoTEC) and Sustainability: from botany to the interdisciplinary approach. *Sustainability*, 11, 413.

